Faculty

Hamid Jafarkhani
Anima Anandkuma

Ahhmed Eltawil
Athina Markopoulou

Homayoun Yousefi’zadeh
Network Coding

• **Basic Idea**
 – Allow intermediate nodes to combine packets
 – Receivers must decode to obtain source packets

• **Benefits**
 – Can improve throughput
 – Can make distributed scheduling easier

• **Potential Applications**
 – Wireless multihop networks
 – Peer-to-peer networks
Making Network Coding Practical:

• **Cross-layer Optimization of Coded Wireless Networks**
 – Make network coding work best with TCP or video traffic and in the presence of loss [see poster]

• **Network Coding and Topology Inference**
 – Use network coding to reverse engineer properties of the network [see poster]

• **Network Coding and Security**
 – Network coding is vulnerable to byzantine pollution attacks
 – Novel security mechanisms are needed

• **Network Coding and Interference Alignment**

• **Implementation on Smartphones**
 – At the MAC (for wireless) or the application (for p2p) layers [see poster]
Developed reference OFDM and OFDMA systems to evaluate performance of key wireless communications algorithms

- Spectral efficiency: Up to 4x4 MIMO
- Reconfigurability:
 - Meters: providing signals to be used in the decision engine (cognitive and software defined radio research)
 - Capability to experiment with multiple algorithms: Modular design with de-centralized scheduling
 - Sphere decoding architectures
 - Channel estimation techniques
 - Low Power VLSI architectures
 - Reconfigurable architectures, e.g., FEC
 - Block boundary detection
 - Synchronization techniques etc.
• WARP: Wireless Open Access Research Platform from Rice University
 – Programmable carrier frequency (2.4, 4.9, 5 GHz)
 – Virtex-II pro FPGA (PHY)
 – Embedded microcontroller (MAC)
 – Support up to 40MHz of bandwidth
• Daughter Card supports Virtex-5 FPGA for expandability
More and more of human online activity is carried on or influenced by OSNs. E.g., email communication; voice and video communication (skype); photos and videos (flickr, youtube); news; recommendation systems…

<table>
<thead>
<tr>
<th>Size</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 million</td>
<td>2</td>
</tr>
<tr>
<td>200 million</td>
<td>9</td>
</tr>
<tr>
<td>130 million</td>
<td>12</td>
</tr>
<tr>
<td>100 million</td>
<td>43</td>
</tr>
<tr>
<td>75 million</td>
<td>10</td>
</tr>
<tr>
<td>75 million</td>
<td>29</td>
</tr>
</tbody>
</table>

(in November 2010)

> 1 billion users
> 15% of world’s population
> 50% of world’s Internet users

> 1 billion users
> 15% of world’s population
> 50% of world’s Internet users
• **Sampling**: Crawl OSN graphs and obtain representative samples
 - Random Walks on Facebook
 - Exploration techniques (e.g. Breadth-First-Search)
 - Multigraph Sampling of Last FM
 - Stratified Sampling of Facebook

• **Content distribution**
 - Content becomes popular over OSNs (overlay) but eventually is carried over the communication infrastructure (underlay)
 - 3G operators can use mechanisms (pre-fetching, caching, ad-hoc connectivity) to off-load their network
 - [see Poster on “OSNs meet Smartphones”]
Use measurements of network traffic and machine learning techniques on appropriately selected features to detect/predict malicious activity.

Example of information logged per packet

<table>
<thead>
<tr>
<th>Time</th>
<th>Victim network</th>
<th>Src IP</th>
<th>Dst IP</th>
<th>Src Port</th>
<th>Dst Port</th>
<th>Protocol</th>
<th>Flags</th>
</tr>
</thead>
</table>

Graph

- **Traffic volume**
- **Source IP**
- **Time (day)**
• **Stop Malicious IP Traffic (e.g. DDoS attacks)**
 – At the edge of the network:
 • Predict future malicious traffic (using techniques from recommendation systems) based on past measurements at various places in the network
 • Block malicious traffic (using prefix-based filters in TCAM)

• **Phishing**
 – Classify phishing sites using machine-learning techniques on lexical features only (the URL name) [INFOCOM’11]
 – [see poster on PhishDef]

• **Click-Fraud Detection**
• **Universal Software Radio Peripheral (USRP)**
 - Enables rapid prototyping of SDRs

• **Hardware**
 - Motherboard implements FPGA baseband
 - Connects to GPP using USB/Gb-ETH
 - Daughterboards implement RF front-end

• **Is Programmed Using GNU Radio**
 - Implemented in Python/C++ under Linux

• **Full IP Stack**
 - Is implemented in Linux
• MIMO OFDM PHY
 – MRC, STBC, STTC

• Load Adaptive Hybrid MAC
 – Hybrid CSMA-TDMA Behavior
 – Cooperative LA-MAC

• PHY-MAC Interference Mitigation
 – Simultaneously Transmit on Same Frequency
 – Use MIMO to Extract Collided Signals
• Cross-Layer Routing
 – TCP BIC/CUBIC
 – VCP, MPCP

• Cross-Layer Transport
 – LA-MAC Assisted MDR
 – IPSec Encrypted

• Applications
 – File and Image Delivery
 – Stored/Live Audio Delivery
 – Stored/Live Video Delivery
• SOA-Based Monitoring
 – Heartbeat Statistics
 thru GPS-Based Laptops

• Connectivity Graphs
 (PHY/MAC/NETOWORK)
 – LA-MAC reports SINR, SER,
 and FER statistics
 – MDR HELLO messages reported
to the monitoring console
 – Collect Performance Data
 (Link Quality, Loss, Delay)
 – SNMP MIBs

• Cognitive Policy-Based Network Mgmt (PBNM)
• **Apps thru NMS Monitoring**
 – Healing Partitioned MANETs
 – Reach Back
 – Range Extension

• **Connectivity Augmentation**

 A Small No of ANs
 – USRP2, UAVs
 – AN Placement Algorithms
 Small World Phenomenon, Percolation, and Graph Theory
 – Formation of ANs Using Cooperative Comm Techniques
Small Form Factor Sensors

New Horizon

- **Environments of Interest**
 - Position Location Monitoring
 - Battlefield Health Monitoring
 - Civilian medical Monitoring

- **Signals of Interest**
 - GPS, Audio, Video, Vital Signs

- **Technology Platform**
 - Hardware: Gumstix (Ocero Fire) and Motes (MICAz, IRIS)
 - Software: IP Stack under Development at UCI